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I. Summary

This project is concerned with several questions concerning the existence,

uniqueness, continuous data dependence and numerical computation of solutions of

various ill posed problems in partial differential equations.

Several problems involving reaction diffusion equations with and without

convection terms present were studied. In the latter case the ability of finite

element approximate solutions to reproduce the continuous time dynamics was

investigated. In the former case, a convective diffusion equation with a semilinear

source in the boundary condition was analyzed. A fairly complete picture of the

dynamics was obtained. With the source term in the equation, computations revealed

a rich structure which has been partially analyzed theoretically.

Several problems for reaction diffusion equations in unbounded regimes were

also investigated. It was shown that under certain conditions in the rate law all

nonzero solutions blow up in finite time, while for other conditions in the rate

law, solutions damp out.

It was shown that a potential well theory is possible for certain hyperbolic

problems in which a nonlinear boundary condition is prescribed and not possible in

certain cases when the forcing term in the differential equation is singular.

Numerical experiments performed on the wave equation with a singular forcing

term have down that when quenching occurs, the time and exact derivatives blow up in

finite time. The nature of the blowup was studied computationally.

An investigation was begun into the study of the existence of nonconstant (in

time) time periodic solutions of semilinear wave equations in exterior domains

(breathers). Necessary and sufficient conditions for the existence of such

solutions were given.

Continuous data dependence results were established for certain classes of

initial value problems.
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Some seismic inverse problems were studied both analytically and numerically

with a view toward recovering either the elastic coefficients or any source terms

for problems in a layered half space. Such problems, being ill posed, require

careful analysis from both points of view. Some new results for coefficient

determination problems were obtained, which provide algorithms for computational

purposes.

In the study of certain eigenvalue problems for the Laplacian, several

interesting, geometry dependent, inequalities between Dirichlet and Neumann

eigenvalues were obtained.

Numerical solution of a modified pendant drop equation demonstrated the

existence of positive radial solutions of the equation in all of space.
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I. Research Objectives

A. Reaction-Diffusion Equations. Here we are concerned with several types of

problems involving reaction diffusion equations. In some of these problems,

convection terms are present in the equation as for example in Burger's equation

with a power law nonlinearity. In other problems, the underlying geometry is some

unbounded region such as a cone or the exterior of a sphere. In still other

problems, the reaction term is singular as arises in so called quenching phenomena

in semiconductor theory. Still other problems arise in forced flows through porous

media. In some problems the reaction terms enter through the boundary condition as

for example in problems in penetrative convection. In others, the reaction terms

are nonlocal appearing in the boundary condition or in the governing equation or

perhaps both. We are studying these problems from the point of view of examining

the long time behavior of their solutions.

B Semilinear Wave Equations. In their paper on quenching for solutions of wave

equations with a singular forcing term, Levine and Chang showed that if > 0 was

large then solutions of the initial boundary value problem for the equation

utt Uxx + 9/0-u)

with zero boundary and initial data reached one in finite time (quenched). We are

concerned with the behavior of the derivatives at quenching time. Specifically, we

want to know which derivatives in the equation blow up and the nature of the growth.

We consider, in several space dimensions, and initial-boundary value problem

for the wave equation with a singular nonlinearity:

u = u + (1-u) - 8 , (8 > 0, => 0).

we seek conditions on and the initial data for which the solution remains less

than one (pointwise) for all time. The problem is complicated by the lack of an

embedding inequality from H into L for more than one space dimension.
0

We have been interested in the questions of existence and qualitative behavior of

time-periodic solutions of the nonlinear wave equation

u - A u +~ g(u) = f
tt nf

in which u and f are real-valued functions defined on Rn x R (n) 1) and g:R + R.

The function f is assumed to be T-periodic in time, radially symmetric in space and

square-integrable over (0,T)xR. A solution u should have the same properties. If

g(u) = m u + sin(u) then the equation is the forced sine-Gordon equation with mass

term.
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A third problem of importance is the initial boundary value problem for the wave

equation with a large oscillating nonlinearity, for example,

Utt = UXX + U3COS U.

when the factor of cos(u) is replaced by either one or minus one, the dynamical

problem is well studied and reasonably well (although not completely) understood.

In this case, however, there is no general theory and many surprises as, for

example, the existence of infinitely many positive stationary solutions. We want to

investigate (numerically) the stability of these ground states.

In 1974, L. E. Payne and D. H. Sattinger developed a potential well theory and

a corresponding existence - nonexistence theorem for initial-boundary value problems

of the form

u = n u + f(u)
tt n

where (i) f is either a convex point function or (ii) convex for u > 0, concave for

u < 0 and grows like IuIp for p > I at infinity. The arguments in the second case

were seriously flawed. We consider the problem in this case, as well as the

question of developing analogous results for a similar problem when the equation is

linear but when u/an = f(u) on a portion of the boundary of the spatial domain.

We seek similar results for parabolic problems.

C. Inverse Problems. The general seismic inverse problem is that of determining

the functions which characterize an elastic or acoustic medium, using measurements

which can be made at the surface of the medium. Many versions of this problem may

be formulated, depending on the geometry, nature of sources, nature of measurements,

and on the a priori assumptions made on the medium. Typically such problems are

ill-posed, and in practice data are noisy and band-limited. Thus one is interested

not only in mathematical existence and uniqueness questions, but also in developing

strategies for extracting the maximum amount of useful information out of the

available data.
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In our research we investigate the mathematical structure of various model

problems, with special attention to constructive solution techniques which might be

suggested by the analysis. Whenever feasible, we try to complement the theoretical

analysis with numerical calculations. While much current research deals with

somewhat idealized model problems, we hope eventually to be able to handle more

realistic situations.

D. Evolutionary Equations. We have been looking at the question of finding

continuous data dependence results for the Cauchy problem for evolutionary equations

of the form
dnu
d- = Mu

ndt

where n - 1,2,3, and M is an unbounded operator on a Hilbert space valued functions

u(t). This problem is always ill posed if n > 3. However, in special cases,

Levine, Murray, Payne and others have found weak (logarithmic) continuous data

dependence results. We wish to obtain HIlder continuous data dependence results for

such problems (which are known to hold when n = 1,2 even when the Cauchy problem is

not well posed).

E. Eigenvalue Problems. For bounded domains in RN , Levine and Weinberger looked

for sufficient conditions on the boundary curvatures to insure that

Uk+R < Xk for k - 1,2,..., where R is a fixed integer in [1,N] and wi. i. denote

the Neumann and Dirichlet eigenvalues for the Laplacian. Such results would extend

an early result of Payne who showed that w k+2 < Xk if N = 2 and the domain was

convex.

F. Numerical Solution of Nonlinear Partial Differential Equations. Ie seek

positive global solutions of a modified pendant drop dquation in Rn:

dvgradu + -uq u =0 (0>0, q>1).

( l+ jgraduj,2)2)

in Rn, with the "boundary condition" ti(x) + 0 as lxi + =. The question of the

existence of such solutions was raised by J. Serrin.
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III. Status of Rearch

A. Reaction Diffusion Equations.

i) Sacks has investigated decay rates for solutions of quasilinear parabolic

problems of the form

ut = A(u) - f(u) x ; t > 0

u(x,t) = 0 x r00 t > 0

u(x,O) = UO) x -Q

Where S I is bounded. Sufficient conditions (and sometimes necessary conditions)

on the nonlinearities € and f are given so that an estimate of the form

Hu (.,t)I Lc() 4 n(t) holds where n is independent of uo . Exact computation of

the form of r(t) is possible in many cases.

ii) Benilan, Crandall and Sacks have proved results about the continuous

dependence of the solutions on the nonlinearities for the elliptic problem

8(u) -Au f xn

au
au Y(u) x~ 3a

where is bounded, fg L1(0) and 8, y are maximal monotone graphs. These

results imply corresponding ones for the related parabolic problem

vt = A(u) xrn t > 0

a n ¢(u) = y(O(u)) x a t>o

v(x,O) VO(X) x~

-1

where € - 8 •

iii) Papers by Chen, Levine and Sacks and Levine, Payne, Sacks and Straughan

considered the reaction-diffusion-convection problem

ut - Uxx + (g(u)) X + f(u) 0 < x < L t > 0

(A) u(0,t) - u(L,t) = 0

u(x,O) - Uo(x)
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under various conditions on the nonlinearities f aid g. Detailed analysis of the

structure of the set of nonnegative steady state solutions was carried carried out,

and this information was then used to describe the possible large tine behavior for

the solution u(x,t).

iv) Related to the above problem is the case of a nonlinear boundary condition.

Here Levine considered problems of the form

ut = u + r(g(u)) 0 < x < L, T > 0,

(B) u(O,t) = 0

U x(I't) - f(u(I,t))

u(x,O) = uo(x) > 0.

Such problems are not amenable to the Hopf-Cole transformation. When e = 0, a

fairly complete analysis of the time dependent problem was given by Levine and Smith

who modified (and corrected) the potential well arguments of Payne and Sattinger to

obtain a global existence-nonexistence result (which also holds in more than one

space dimension). However, potential well theory cannot be applied when convection

terms are present in the governing equation. Moreover, it has been found that when

e = 0, the results found for iii) (A) and for (B) are closely related (even in

several dimensions). By examining (B), therefore, he hoped to learn more about

(A). He found that (B), too, has a rich structure and that he could obtain very

precise existence and stability-instability results which not only helped him to

better understand (A) but were also obtainable without recourse to the computer.

1) Khalsa analyzed the ability of semidiscrete finite element approximations, with

numerical integration, to reproduce qualitative dynamics

(*) ut = uxx + f(u), f(u) - -u(u-b)(u-1), 0 < b < 1/2,

in the region {lxI < L, t > 01, recently analyzed by Conley and Smoller. For the

semidiscrete approximations he established the asymptotic, as t + -, optimal order

convergence and error estimates that hold uniformly on the infinite time interval

(to, -), 0 < to, for nonsmooth or incompatible initial data. Also approximation

of the "spontaneous bifurcation" (with L as a parameter) for the steady-state

problem has been analyzed.

For the problem

d
(**) ut - Au + f(u) in I x (0,-), QCR , d < 3,



he established that the error bound for the semidiscrete approximations consists of

two terms. The first term has the power of h less than optimal, due to lack of

smoothness of initial data, and decays exponentially in time, the second term is of

optimal order in h and does not depend on time.

He has also analyzed the effect of numerical integration in finite element

solution of some nonlinear problems.

vi) Bandle and Levine have shown that for a class of reaction-diffusion equations

of the form

u= u + up

t n

in a sector (cone in Rn ) there are no global solutions for arbitrarily small initial

values if p is small relative to the (solid) angle opening and that there are such

solutions if p is large relative to the angle opening.

vii) Levine has examined the initial-boundary value problem for

u~ xx (1L-u )-
U t  UK +x (-U-

from the point of view of dynamical systems. He has obtained all of the stationary

solutions and shown that there are initial values as close as one pleases to

unstable stationary solutions for which the corresponding solution quenches (rather

than simply stays outside of some neighborhood of the stationary solution).

viii) Levine has begun to look at problems in which the reaction terms contain

nonlocal nonlinearities. The anlysis of the stationary solutions as well as there

stability is complicated by the fact that one has to develop comparison theorems for

these problems since the standard results do not apply to them.

B. Seilinear Wave Equations.

i) We are concerned with the behavior of the derivatives of the solution of

utt = u xx + m/(1-u)

when the solution reaches one in a finite time. The derivatives of the solution of

the problem are studied numerically near the time when u reaches one (this time will

be called T*). The significant numerical observations are:
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I) ut(O.5,t) behaves like -{ln[V-2 (T* - t18 with beta positive as

t -> T

2) ux (0.5,t) is bounded as t -> T*.

3) utt blows up more quickly than 1/(T* - t).

4) Uxx blows up like ln(T* - t) in the sense that the limit of the

ratio of these quantities is a nonzero constant.

5) It was demonstrated numerically by Chang and Levine that there was

a critical ,say *, such that for g >: * the solution

quenches, while if the reverse inequality holds, there is no

quenching. lle show (numerically) that the quenching time T

behaves like

Smith examined the first initial-boundary value problem for

S= ANu + €/(I-u) (E > 0)

in Q x [O,T) where n C RN. He showed that for N > 2, there was no potential

well theory possible and that for N = 2,3 it was possible to solve the problem

locally. He also carried out computations that indicate that there is a critical

E, E , (depending on the initial values) such that for e's larger than e , the

solutions quench, while for e's smaller than e , they exist globally. The

computation was carried out in an N-Ball for several values of N.

ii) For the equation

t -urr - ((n-I)/rur + g(u) = 0, r > 1, 0 < t < T

u(r,z) = u(r, t+T),

Levine has shown that if g r C2(R1 ), g(0) = 0,

T
(a) f f jul dr dt <

R 0
T

(b) lim r 2(n-I) f (u2 + u 2 dt 0
r + + 0 r 0

n-1(c) lim r Ilu(r,)11,. = 0
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and g'(0) < (2n/T), then u does not depend upon t. In the case that n - 3,o 1+8

rn - 1 = r2 may be replaced by the factor r for some 5, 0 < 8 < 1. The

arguments used can be modified to obtain related results for the equations of

semilinear and nonlinear elasticity. For example, for

- u a ~ (4(u) 0,tt xx 3x x

with the periodic constraint,

u(x,t) u(x+L, t),

one can show that if t'(0) + 1 > 0,

lim f (U + u2)dt = lim Iju (X,t)1 = 0

t+CO0 t

then u must be constant. If '(0) + 1 < 0, the result is false.

Prior to Smiley's work the only known results on the problem of time-periodic

solutions of the nonlinear wave equation

utt - An u + g(u) = f

assumed the spatial dimension to be one and the equation to be homogeneous. In this

case g(u) = mu and f is replaced by the zero function. The work of J. M. Coron, in

1982, established a link between the period T and the strength of the nonlinearity

as measured by g'(0). He showed that any T-periodic solution, of class C and

decaying to zero as x + -, would in fact be independent of time whenever
2g'(0) < (2/T)2 . The above work of Levine extended Coron's result to problems in

several dimensions. In what was apparently the only result showing existence of

solutions, A. Weinstein showed in 1985 that there were indeed time-dependent
2solutions on the half-line when g'(0) > (2n/T) , and that these solutions were

localized in space in the sense that they had exponential decay as x + ± =.

Smiley's work was initially focused on the linearized problem in which g(u) = mu

with m real. In addition he assumed radial symmetry in space. When the spatial

dimension is either I or 3 he was able to completely characterize the set of

solutions u for all forcing terms f having exponential decay as r + =. It was

also shown that all solutions inherited the property of exponential decay. Building

on this analysis he was then able to establish the existence of solutions for the

nonlinear problem in both dimensions 1 and 3. All solutions were shown to have

exponential decay as r + -, so they are localized in space. When f is identically

zero it is shown that there are time-dependent solutions whenever
2

g'(0) > (2ir/T)
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These solutions have been referred to as breathers by several authors since the

spatial profile exhibits an oscillation suggestive of breathing.

In addition to the theoretical work he developed Pascal programs which can be used

to obtain approximate solutions, and to study the changes in the solution set as

parameters in the problem are varied. In particular the programs can be used to

numerically describe the bifurcation that takes place in the solution set as g'(0)

2
crosses one of the values (2niy/T)

iii) Alexander is investigating the structure of solutions of

utt Uxx + u 3 cos u,

with, say, Dirichlet boundary conditions on [0,1] in x.

In an attempt to build a picture of the time-dependent behavior by hanging it on the

skeleton of the steady-state solutions, he examines the following BVP:

(**) uxx + u3 cos u = 0, u(0) = u(1) = 0.

This is a plane autonomous conservative problem. The phase plane exhibits

alternating saddles and centers along the u-axis, with a degenerate singular point

at the origin.

In order to study (**) one considers the related initial value problem:

Uxx + u3 cos u = 0, u(0) = 0, ux (0) = s

Define the arrival time T to be the minimum positive x such that

ux (T) = 0.

Then T is a function of s.

The initial value ODE problem has a conserved energy; one defines the segment

between two consecutive saddles in the phase plane as a "window."

Numerical computations indicate that:

1. Within each window, arrival time T is a convex function of energy;

2. In the k'th window, the minimum arrival time is

0.09 k-1/ 2 + o (k-1/2),

the k'th window being the energy space between the saddle at

(4k-3) n/2 and the saddle at (4k+l) n/2. This minimum arrival

time is achieved by the solution having about 15/16ths of the

maximum energy in the window.
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3. The above implies that there are two initial conditions within

each energy window yielding arrival times T-1/2. These give

solutions of the BVP (**) above on [0,11.

4. He has computed the solutions of the BVP (**) above for the first

two windows. In the second window they already lie very close to

the stable manifolds of the saddles that bound the window.

5. The linearized problem

Vxx + f'(u(x)) v + m v, v(O) = v(1) = 0

(f(u) = u 3 cos u], linearized, that is, about solutions u of the

BVP, appears to have spectrum that is entirely negative, or

negative except for one positive eigenvalue m.

iv) In a pair of papers Levine and Smith investigated the following problems

N
(Q RN , bounded):

A. u = Au in Q x [0,T)

t

u = 0 on x, x [0,T)

= f(u) on 2 x [0,T)

u(x,O) = u0 (x) on n X to)

and

B. utt = Au in Q x [0,T)

u 0 on x1 x [0,T)

au o 0T
-_ u f(u) on x [O,T)

u(x,0) Uo(x)

on Q X j0}
ut(xO) VO(x)

where U ,2 - an, t ', = ' and where n denotes the outer normal

derivative. For suitable nonlinearities, f, a potential well theory is developed.

Each problem has a global weak solution provided the data lies in the potential

well and the total initial energy is small. The global solution is obtained as an

expansion in normal modes in terms of the Helmholtz eigenfunctions and the

eigenfunctions for a modified Steklov problem. The proof of global existence is

valid for all potential wells of positive depth and all dimensions n ) 1, and can

be used to generalize Sattinger's theory.
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Solutions of these problems which start in a region exterior to the potential

well with sufficiently small total initial energy can only exist for a finite

time. The proof of this fact requires stronger hypotheses on f and corrects a key

lemma of Payne and Sattinger.

C. Inverse problems

i) Sacks and Santosa consider the one dimensional velocity inversion problem:

find c(z) for z > 0 given c(0) and u(O,t) where u(x,t) satisfies

ut= c2(zuz z > 0utt C2()UzzZ>

U x(0,t) -6(t)

u(x,t) 0 t < 0

where 6 is the Dirac delta function. The solution to this problem is known to be

unique under suitable regularity assumptions. In this paper an iterative solution

method of quasi-Newton type is derived and analyzed, and numerical examples are

given. Related least square problems are also studied.

ii) Sacks and Symes study the following inverse problem for a one dimensional

elastic medium: Find P(x 3 ), X(x3 ) and u(x 3 ) for x3 > 0 given p(0), X(O), p(O) and

u 3 (xl,x 2 ,0,t) where U - (u1 ,u2 ,u3) = u(xlx 2 ,x3 ,t) satisfies

Puit = -i- T (i - 1,2,3 x3 > 0

T1 3  T2 3  0 x 3 = 0

T = 6(X1) 1 (x2 ) 6(t) x 3  = 0

where T is the stress tensor, TIj (u) - X(M.) 6ij + ax + ax * Continuous

dependence estimates and a constructive approximate solution method for the

linearized inverse problem are given, and a numerical example is shown. There is

also heuristic discuss of iterative solution for the nonlinear problem.

iii) Bube, Lailly, Sacks, Santosa and Symes have considered the problem of

simultaneous recovery of a velocity profile and the source wave form in the

following problem: Find c(z) for z > 0 and f(t) for t .> 0 given c(O) and u(x,0,t)

where u(x,z,t) satisfies

utt = c2 (z) (uxx + Uzz) t > 0 z > 0

Uz(x,O,t) - f(t) 6(x)

u(x,z,O) = 0 t < 0
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Continuous dependence estimates and an constructive approximate solution method are

given for the linearized inverse problem, and some numerical examples are given.

iv) Sacks has considered the inverse problem for a two dimensional acoustic

medium. Find p(x,z), c(x,z) for z >0, - < x < - given p(x,O), c(x,0) and

u(x,y,0,t) where u(x,y,z,t) satisfies

t = V.(- Vu) z > 02utt P
pc
uz(X,y,O,r) - -6(y) 6(t)

u(x,y,z,t) - 0 t < 0

The assumption of weak inhomogeneity is made (i.e. p and c are close to constant)

and the corresponding linearized inverse problem is analyzed in some detail, with

special attention to continuous dependence questions. It is shown that the solution

may be obtained by solving an uncoupled system of one dimensional, second kind,

Volterra integral equations. Some examples of numerical solutions are given using

this idea.

v) Sacks and Symes consider the problem of velocity inversion from common offset

data for a two dimensional acoustic medium. Find c(x,z) for z > 0 given c(x,0) and

u(x+h,h,0,0,t) where u(x,y,z,t) satisfies

utt = c2 (x,z) Au + 5(x-h) 6(y) 6(z) 6(t)

u(x,y,z,x) - 0 t < 0

where h > 0 is.a fixed half-offset (source-receiver) distance. The assumption of

weak inhomegeneity is made (c close to constant) and the corresponding linearized

inverse problem is studied with special attention to uniqueness and continuous

dependence questions. A constructive solution method is proposed, and the case of

multi-offset data is also considered.

D. Evolutionary Equations. K. Ames, Levine and Payne have succeeded in

demonstrating that it is possible to obtain H5lder continuous data dependence

results for the evolution equation described earlier for small n, (n 4 4). However

the general case is still open.

E. Eigenvalue problems. Let Dc Rn be a bounded domain. Levine and Weinberger
C2+a

have shown that if the domain is convex with a C boundary then

"k+N < Xk) k - 1,... where {\i), {uilare the Dirichlet and Neumann eigenvalues for

the Laplacian on D. If the mean curvature is positive then p k+I < Xk (Aviles).

Also, if, at every point of the boundary, every sum of length N - R + 1 of the set

of numbers ,, , (N-I) H} is nonnegative, then uK+R < XK. (Here
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the K's are the principal curvatures and H is the mean curvature.) Examples and

counterexamples are given. Also, a characterization in terms of the equations

defining the boundary surface is given.

F. Numerical Solution of Nonlinear Partial Differential Equations. It was shown

numerically, that radial, global, positive solutions of the equation

div grad u + uq  u = 0 (X > 0, q > 1).

((1+1grad ul ) /

exist for all X sufficiently large and I < q < (n+2/(n-2). This was a surprise to

Serrin who (with Ni) had shown that no global solutins existed for all

X< X - ( 1/2 (q-l)/q+l)) 1/2 (q-1) and q < (n+2)/(n-2). The computations motivated

Serrin and Peletier to prove the existence of such solutions. The computations also

show that the nonexistence result is not best possible. It was also shown that

global, radial solutions which change sign also exist. (Serrin and Peletier have

not shown this theoretically.) The computations raised other interesting questions

about the nature of the solutions of this equation.
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V. Personnel

A. Senior Staff Support
(Oct. 1, 1984-Sept. 30, 1987)

1. Professor Howard A. Levine (P.I.) 9 months

2. Associate Professor Paul E. Sacks 9 months
3. Associate Professor Roger K. Alexander 2 months

4. Associate Professor Michael E. Smiley 2 months
5. Assistant Professor Tsu Fen Chen 4 months
6. Assistant Professor Sat Nam Khalsa 2 months

B. Graduate Research Assistants
1. Richard A. Smith 15 months

(Smith received his Ph.D. in December 1985. He is now employed by Exxon
Corp. in Houston, TX)
Thesis Title: Theoretical and Numerical Studies of Some III Posed

Problems in Partial Differential Equations
(Smith's thesis was considered good enough to earn him a travel grant to
the International Congress of Mathematicians in Berkeley. This was
awarded by the U.S. Organizing Committee)

2. Thomas K. Evers 0 months
(Evers received his M.S. in December 1985. He is now employed by Texas
Instruments, Dallas, TX)
Thesis Title: Numerical Search for Ground State Solutions of a

Modified Capillary Equation.
The numerical results in Ever's M.S. paper formed the basis of two
conjectures which Serrin and Peletier have recently established concerning
the existence of ground states for

7.(( + 1+ui2)-1/2 Vu] + X - u = 0.

(Peletier, L. A. and Serrin, J., Ground states for the prescribed mean
curvature equation, Proc. AMS (in press).
Serrin, J., Positive solutions of a prescribed mean curvature equation (in
press).)

3. Jeffrey Anderson (Ph.D. Candidate) 10.5 months
Thesis Area. Reaction-diffusion equations with convection. He is

currently developing a local L existence theory.

4. Sang Ro Park (Ph.D. Candidate) 4.5 months
Thesis Area: Nonlinear parabolic equations. He has been trying to prove
blow up results for the time derivative at quenching in some sngular
parabolic problems.

5. Deng Keng (Ph.D. Candidate) 4.5 months
Thesis Area: HyperboLic equations. He is attempting to establish
theoretically the numerical results obtained by Axtell.

6. John Axtell (M.S. Candidate) 3 months
(Axtell will receive his M.S. in December, 1987. His thesis will be
published in an appropriate journal.)
Thesis Title (tentative): The Blow Up of Derivatives of Solutions of
Hyperbolic Problems which Quench in Finite Time.
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VI. Interactions

A. Seminar, Colloquium Speakers

1. Ralph Showalter (University of Texas, Austin) 10/ 2/84

2. Brian Straughan (University of Wyoming) 10/23/84

3. Murray 'F. Protter (University of California, Berkeley) 4/ 8/85

4. Philip S. Crooke (Vanderbilt University) 4/23/85

5. Michael Crandall (University of Wisconsin, Madison) 11/19/85

6. William Symes (Rice University) 3/18/86

7. Robert Finn (Stanford University) 3/28/86

8. Stephen Hook (University of California, Berkeley) 4/ 4/86

9. Jerry Bona (University of Chicago) 4/ 8/86

10. Pierre Vuillermot (University of Texas, Arlington) 2/15/87 - 2/23/87

11. Jost Holshof (University of Minnesota (IMA)) 3/16/87 - 3/19/87

12. L.E. Payne (Cornell University) 3/23/87 - 3/25/87

13. Joyce McLaughlin (Rennsaler Polytechnic University) 4/27/87 - 4/29/87
7/26/87 - 7/29/87

14. Mohammed Rammaha (University of Nebraska, Lincoln) 4/27/87 - 4/29/87
7/26/87 - 7/29/87

15. Brian Straughan (University of Glasgow) 9/17/87 - 9/23/87

B. Other Interactions (Supported in part by AFOSR 84-0252).

1. Howard A. Levine

a) Consulted with L.E. Payne at Cornell University June 22-29, 1985 and held

informal discussions at the AFOSR Mathematics and Information Sciences,

July, 1985.

b) Visited L. E. Payne, Cornell University (2/10/86-2/14-/86) and AFOSR,

Boiling (2/18/86)

c) Spoke at U.S.-Alpine Conference on Ill Posed Problems in St. Wolfgang,

Austria on periodic solutions of nonlinear wave equations (6/8/86-

6/13/86)

d) Spoke at Microprogram on Nonlinear Diffusion Equations (N.S.F. supported)

at M.S.R.I., Berkeley, California on numerical search for ground state

solutions of a modified capillary equation (9/2/86-9/6/86).
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e) Talked on minimal periods for semilinear wave equations at joint

University of Iowa - Iowa State Seminar in Partial Differential Equations

at Grinnell College. (11/87).

f) Consulted with L.E. Payne on nonlocal reaction diffusion equations and

gave invited talk at J.H. Barrett Memorial Lectures, University of

Tennessee. (4/20/87-4/25/87)

g) Consulted with C. Bandle on blowup problems for reaction diffusion

equations in unbounded domains and lectured at the University of Basel

and the University of Zurich. (5/16/87-5/30/87).

1. Paul E. Sacks

a) Consulted at Cornell University with F. Santosa, W.Symes and others on

inverse problems June 24-July 5, 1985.

b) Consulted at Rice University with W.Symes on inverse problems,

July 30-August 16, 1985.

c) Attended two M.R.C. conferences on partial differential equations,

Madison Wisconsin. (10/85,4/86).

d) Visited I.M.A., University of Minnesota. (12/85).

e) Consulted with M.Crandall at the University of Wisconsin and spoke on

recovery of elastic parameters in a layered half space. (2/86).

f) Consulted with F.Santosa at the University of Delaware and talked on

nonlinear elliptic problems with a noninear flux condition. (3/86).

g) Consulted with W.Symes at Rice University and spoke on recovery of

elastic paramenters in a layered half space. (4/86).

h) Spoke at Fourth Army Conference on Applied Mathematics and Computing,

Cornell University on the recovery of elastic parameters in a layered

half space. (5/17/86-5/30/86).

i) Spoke at Bay Area Seminar on Inverse Problems, Stanford University, on

the recovery of elastic parameters of a layered half space. (8/1/86).

j) Visited Mathematics Department, University of Iowa, gave colloquium on

hyperbolic inverse problems. (2/20/87).



99

k) Attended workshop on nonlinear partial differential equations, Provo,

Utah, gave talk on reaction diffusion convection equations. (3/4/37-

3/7/87).

1) Consulted with W.Symes at Rice University on hyperbolic inverse problems.

(5/31/87-6/3/87).

m) Consulted with W.Symes and F.Santosa at Rice University on hyperbolic

inverse problems. (8/9/87-8/11/87).

3. Sat Nam Khalsa

a) Talked on "Application of topological techniques to the analysis of

asymptotic behavior of the finite element solutions of a reaction-

diffusion equation," at the SIAM Fall meeting, Arizona State University,

Tempe, Arizona. (10/28/85-19/30/85).

b) Talked on "L error estimates for finite element with "product

integration for semilinear elliptic problems" at the Finite Element

Circus, Brookhaven National Laboratory, Long Island, New York. (11/14/85-

11/15/85).

c) Talked on "Finite element approximation of a reaction-diffusion

equation," at the Fourth Army Conference on Applied Mathematics and

Computing, Cornell University, Ithaca, New York. (5/27/?6-5/30/86).

d) Attended "Microprogram": Nonlinear Diffusion Equations and their

Equilibrium States", Math. Science Research Inst., Berkeley.

(8/29/86-9/6/86).

4. Tsu Fen Chen,

a) Spoke at the Fourth Army Conference on Applied Mathematics and Computing

on numerical experiments for a convective reaction diffusion equations,

Cornell University. (5/27/86-5/20/86).

b) Attended IMA workshop on Basic Methods of Numerical Analysis and

Introduction to State-of-the-Art Research, Minneapolis, MN.

(8/18/86-8/29/86.

c) Attended IMA workshop on Computation Fluid Dynamics and Reacting Gas

Flows, Minneapolis, MN. (9/15/86-9/26/86).
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5. Roger K. Alexander

a) Attended SIAM Conference on Numerical Combustion, San Francisco.

(3/9/87-3/11/87)

b) Attended AFOSR Contractors' Meeting on Combustion, University Park,

Pennsylvania. (6/22/87-6/24/87).

6. Michael E. Smiley

a) Attended computer experimentation in nonlinear analysis, a conference

held at the University of Missouri-Columbia from 6/4/87-6/6/87.

b) The Second Howard University Symposium on Nonlinear semigroups, Partial

Differential Equations, and Attractors, held at Howard University in

Washington, D.C. A talk on breathers in several dimensions was given.

(8/3/87-8/7/87).

7. Richard A. Smith

a) Presented a paper on his dissertation at the International Conference on

the Theory and Applications at Pan American University, Edinburg, Texas,

May 20-23, 1983.


